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Abstract
Starting from quantum kinetic theory, collisional absorption of laser radiation
is investigated for dense plasmas. The electrical current and the energy
balance equations are formulated within the framework of nonequilibrium
Green’s function methods. Quantum statistical expressions are derived for
plasmas in which the coupling between electrons and ions is weak due to the
influence of the strong high-frequency laser field, however, the electron and the
ion components may be strongly coupled within their respective subsystems.
Consequently, the expressions for, e.g., the electrical current and the cycle-
averaged energy absorption rate contain the dynamical structure factors and the
dielectric function of the strongly correlated electron and ion subsystems. The
expressions are valid for arbitrary field strength assuming the nonrelativistic
case.

PACS numbers: 52.25.−b, 05.30.−d, 52.25.Dg, 52.40.−w

1. Introduction

Due to the impressive progress in laser technology, which makes femtosecond laser pulses of
very high intensity available in laboratory experiments [1], the laser–matter interaction has
become a field of current interest. If the solid target is irradiated by such a laser pulse, dense
plasmas can be created relevant for astrophysics and inertial confinement fusion. At high
intensities the quiver velocity can be larger compared to the thermal velocity and interesting
nonlinear effects have to be expected.

An important mechanism of energy deposition is inverse bremsstrahlung (IB), i.e. laser
light absorption via collisional processes between the plasma particles. In strongly ionized
plasmas, this absorption process is essentially governed by the electron–ion interaction usually
described in terms of the electron–ion collision frequency.
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In several papers, various approaches were used to calculate the electron–ion collision
frequency and the dynamic conductivity, respectively, for classical plasmas under different
conditions [2–5]. They cannot be applied to situations of laser–plasma interaction where
quantum effects become important. Quantum effects in dense plasmas can be expected (i) if the
Landau length l = e2/kBTe is comparable to the thermal wave length λ = (2πh̄2/mekBTe)

1/2,
i.e. l/λ � 1, (ii) for h̄ω/kBTe > 1 with ω being the laser frequency, and (iii) if the
electrons with number density ne have to be described by Fermi statistics in degenerate
plasmas, i.e. neλ

3 > 1. Quantum mechanical treatments were given by several authors
[6, 7]. However rigorous quantum kinetic approaches, to the IB absorption in dense
plasmas were missing until recently. Kremp et al [8] derived a quantum kinetic equation
for dense plasmas in strong laser fields using nonequilibrium Green’s function techniques.
In this approach, the different interaction processes can be taken into account by appropriate
approximations of the generalized field-dependent scattering rates including nonlinear field
effects such as multiphoton processes and higher harmonics generation. Subsequently,
quantum statistical expressions for the electron–ion collision frequency were derived, and
time-dependent phenomena were studied by numerical solution of this equation [9, 10].
Quantum expressions for the collision term and the electron–ion collision frequency including
dynamic screening were first given in [11–14]. The main focus of the present paper is
on generalizations of the approach to study effects of strong electron–electron and ion–ion
correlations on the collisional absorption rate [15, 16].

2. Kinetic equation for plasmas in electromagnetic fields

We consider a plasma under the influence of intense laser radiation. The plasma is assumed to
be fully ionized consisting of electrons with number densities ne and ions of charge ei = Ze

with number density ni . Equilibrium and nonequilibrium properties of strongly correlated
plasmas are successfully described using the method of real-time Green’s functions. In this
framework, the nonequilibrium plasma state is given by the two-time correlation functions
that are averages over creation and annihilation operators ψ† and ψ ,

g>
a (1, 1′) = 1

ih̄

〈
ψa(1)ψ†

a(1
′)
〉

g<
a (1, 1′) = − 1

ih̄

〈
ψ†

a(1
′)ψa(1)

〉
(1)

where 1 ≡ (
r1, t1, s

3
1

)
, and a labels the particle species. For equal times t1 = t ′1, the density

matrix or Wigner function, respectively, follows from the correlation function g<
a . The

time evolution of g
≷
a , which contain the complete dynamical and statistical information, is

determined by the Kadanoff–Baym equations [8][
ih̄

∂

∂t1
− 1

2ma

(
h̄

i
∇1 − ea

c
A(1)

)2

− eaφ(1)

]
g≷

a (1, 1′)

=
∑

b

∫
d2Vab(1 − 2)gab(12, 1′2+)

=
∫

d1̄
[
�R

a (1, 1̄)g≷
a (1̄, 1′) + �≷

a (1, 1̄)gA
a (1̄, 1′)

]
(2)

with gab being the respective two-particle Green’s function and Vab(1 − 2) = Vab(r1 −
r2)δ(t1 − t2) being the Coulomb potential. In the last line, introduction of the self-energy
functions �

≷
a and �R

a decouples the hierarchy of equations.
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We consider in the following a spatially homogeneous electric field using vector potential
gauge (A and φ denote the vector and scalar potentials, respectively),

A(t) = −
∫ t

−∞
dt̄ E(t̄ ) φ = 0. (3)

It is advantageous to have a gauge invariant description which is achieved by the following
transform [17]:

g̃a(k; t, t ′) =
∫

d3r exp

(
− i

h̄
r ·

(
k + ea

∫ t

t ′
dt̄

A(t̄)

t − t ′

))
ga(r; t, t ′). (4)

The Wigner distribution function is given by f̃ a(k, t) = −ih̄g̃<
a (k; t, t).

The kinetic equation for this gauge invariant Wigner distribution function follows from
the time diagonal Kadanoff–Baym equation and it reads [8]{

∂

∂t
+ eaE(t) · ∇ka

}
f̃ a(ka, t) = −2 Re

∫ t

t0

dt̄
{
�̃>

a g̃<
a − �̃<

a g̃>
a

} =
∑

b

Iab(ka, t) (5)

where a and b label the particle species. The collision integral on the right-hand side (rhs) can
be expressed in terms of the self-energy functions �̃

≷
a

(
ka + KA

a (t, t̄); t, t̄
)

and the two-time

correlation functions g̃
≷
a

(
ka + KA

a (t, t̄ ); t̄ , t
)
, where KA

a (t, t̄) = ea

∫ t

t̄
dt ′[A(t)− A(t ′)]/(t − t̄ )

is the field-induced momentum shift.
The kinetic equation (5) is still very general. Two steps are necessary to find a closed form

with an explicit expression for the collision term: (i) the self-energy functions or, equivalently,
the two-particle Green’s function, have to be specified in a certain approximation, and (ii) the
two-time correlation functions g

≷
a have to be expressed in terms of the Wigner distribution

function. The latter task is known as the reconstruction problem [18].
Powerful schemes are available to determine appropriate approximations for the self-

energy function taking into account nonlinear field dependence as well as many-body and
quantum effects relevant for high-density plasmas. In previous papers [11, 13] we have used
the so-called V s-approximation. It reads for the gauge invariant Fourier transform

�̃≷
a (k; t, t ′) = ih̄

∫
d3q

(2πh̄)3
g̃≷

a (k − q; t, t ′)V s≷
aa (q; t, t ′) (6)

and after inserting this expression into equation (5) we have the starting point to calculate the
properties of interest. The details of the calculation are shown in [13]. The V s-approximation
corresponds to a dynamically screened Born approximation and is therefore applicable to
weakly coupled laser plasmas. In the next section, we will give a generalization to the case of
strong coupling.

3. Collisional absorption for strongly correlated laser plasmas

As we are interested here in the collisional absorption by the dense plasma, it is obvious to
start from the balance equation for the energy and the electrical current resulting from the
kinetic equation (5). The energy balance reads

dW kin

dt
− j · E =

∑
a,b

∫
d3ka

(2πh̄)3

k2
a

2ma

Iab(ka). (7)

One can show that the rhs of equation (7) with a non-Markovian collision integral gives just
the contribution of the mean value of the potential energy. Thus the energy balance (7) is
given by

dW kin

dt
+

dW pot

dt
= j · E (8)
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where the rhs is in turn the energy loss of the electromagnetic field due to Poynting’s
theorem.

For the calculation of the collisional absorption, we start from the general balance equation
for the current density following from equation (5) in which the collision term is not expressed
in terms of the self-energy but in terms of Lab = ih̄(gab − gagb). We find

d

dt
ja(t) − na

e2
a

ma

E(t) =
∑
b �=a

∫
d3q

(2πh̄)3

eaq
ma

Vab(q)L<
ab(q; t, t) (9)

where ih̄L<
ab(t, t

′) = 〈δρb(t
′)δρa(t)〉 denotes the correlation function of the density

fluctuations. For this function an appropriate approximation has to be found.
The two-time correlation function Lab of the density fluctuations is determined by the

following general equations of motion (on the so-called Keldysh contour [19, 20], for brevity
all arguments are suppressed):

Lab = 
ab +
∑
c,d


acVcdLdb. (10)

In a plasma in a strong laser field, the coupling between species with different charges can
be considered to be weak, whereas the coupling between particles with equal charges is
not affected. Then the so-called polarization functions 
ab can be adopted to be diagonal,

ab = δab
a , and an approximation in lowest order of Vei is appropriate. We find

L
≷
ei (q; t, t ′) =

∫
dt̄

[
L≷

ee(q; t, t̄)Vei(q)LA
ii(q; t̄ , t ′) + LR

ee(q; t, t̄ )Vei(q)L≷
ii (q; t̄ , t ′)

]
. (11)

Here the two auxiliary functions Lee and Lii are defined by

Lee = 
e + 
eVeeLee Lii = 
i + 
iViiLii . (12)

Consequently, the functions LR/A
aa and L≷

aa are density response functions and correlation
functions of density fluctuations, respectively, of the two subsystems.

For the electron current it follows that

d

dt
je(t) − ne

e2
e

me

E(t) = Re
∫

d3q

(2πh̄)3

eeq
meih̄

Vei(q)2π

∫ t

t0

dt̄
[
See(q; t, t̄)Vei(q)LA

ii(q; t̄ , t)

+LR
ee(q; t, t̄ )Vei(q)Sii(q; t̄ , t)

]
(13)

where we introduced the dynamical structure factor

2πSaa(q; t, t̄) = ih̄

2

[
L>

aa(q; t, t̄) + L<
aa(q; t, t̄)

]
. (14)

The equation for the ion’s current is similar.
The field dependence can be made explicit. One has to take into account that the functions

Lee, e.g., are functionals of the electron correlation functions g
≷
e alone. Then one finds [15]

Laa

(
q; tt ′

∣∣g≷
a

) = exp

{
− i

h̄
q · ea

ma

∫ t

t ′
dt̄A(t̄)

}
Laa

(
q; t − t ′

∣∣G≷
a

)
(15)

where the functionLaa

(
q; t−t ′

∣∣G≷
a

)
is a functional of field-free functionsG

≷
a that are assumed

to be local equilibrium functions. The Fourier transforms of G
≷
a are given by

−ih̄G<
a (p; ω) = Aa(p; ω)fa(ω, Ta) ih̄G>

a (p; ω) = Aa(p; ω) [1 − fa(ω, Ta)] (16)

with fa(ω, Ta) ≡ 1/[exp{(h̄ω − µa)/(kBTa)} + 1], and Aa being the spectral function of the
strongly correlated subsystem.
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The electric field occurs in equation (15) in an exponential factor and thus causes nonlinear
effects such as multiphoton absorption and the occurrence of higher harmonics in the current.
In the following, a harmonic electric field E = E0 cos ωt will be considered. The exponential
pre-factor in (15) can be expanded into a Fourier series. The current balance is given then by

d

dt
je(t) − ne

e2
e

me

E(t) = Re
∫

d3q

(2πh̄)3

2πeeq
meh̄

V 2
ei(q)

∑
m

∑
n

(−i)m+1Jn

(
q · w0

ei

h̄ω

)

× Jn−m

(
q · w0

ei

h̄ω

)
eimωt

∫ ∞

−∞

dω̄

2π

[
See(q; ω̄ − nω)LA

ii (q; ω̄)

+LR
ee(q; ω̄ − nω)Sii (q; ω̄)

]
(17)

where Jl is the Bessel function of lth order and with w0
ei = (ee/me − ei/mi)E0/ω. In the

above equation, we have suppressed (and will do in the following) the functional dependence
of Saa and Laa on G

≷
a .

The ion dynamic structure factor Sii and the response functionLii are localized in the low-
frequency region, i.e., for a high-frequency electric field, ω̄ can be neglected in comparison
with nω. In this case, the first term in the brackets vanishes because

∫
dω̄LA

ii(q; ω̄) = 0, and
for the current it follows that

je(t) −
∫ t

−∞
dt̄

nee
2
e

me

E(t̄ ) = Re
∫

d3q

(2πh̄)3

∑
m

∑
n

ee

me

q
mh̄ω

V 2
ei (q)(−i)m+2 eimωt

× Jn

(
q · w0

ei

h̄ω

)
Jn−m

(
q · w0

ei

h̄ω

)
LR

ee(q; −nω)niSii (q) (18)

with the static structure factor Sii (q) [21, 24] defined by

Sii (q) ≡ 1

ni

∫
dω̄Sii (q, ω̄) = 1 + ni

∫
d3r[gii(r) − 1] e− i

h̄
q · r (19)

where gii(r) is the pair correlation function.
The Fourier coefficients of the current can be identified easily from equation (18). Only

the odd harmonics are allowed due to the symmetry of the interaction, cf [13].
Equation (18) is a generalization of the theory developed in [13]. Approximating

Sii (q) ≈ 1 and using LR
ee in random phase approximation (RPA), one gets the results of

section IV in that former paper. Now there is included the static structure factor of the
ion component. Further the function LR

ee is the exact density response function of the
electron subsystem, i.e. the electron–electron interaction can be included on a very high
level. Appropriate approximations can be expressed via local field corrections (LFC), see e.g.
[22, 23],

LR
ee(q, ω) = χ0

e (q, ω)

1 − Vee(q)G(q)χ0
e (q, ω)

(20)

with χ0
e being the usual free-electron Lindhard polarizability.

4. Collisional absorption rate

An important quantity is the cycle-averaged dissipation of energy 〈 j · E〉. Often also the
electron–ion collision frequency νei is discussed which is defined for the high-frequency case
by (ωp—plasma frequency)

νei = ω2

ω2
p

〈 j · E〉
〈ε0E2〉 . (21)
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Figure 1. Electron–ion collision frequency as a function of the coupling parameter � for different
values of the quiver velocity. LFC in accordance with Ichimaru and Utsumi [23] (solid), without
LFC (dashed). Sii is calculated in HNC approximation. The quiver velocity is defined as
v0 = eE0/meω, vth = (kBTe/me)

1/2.

From equation (18) it follows that

〈 j · E〉 =
∫

d3q

(2πh̄)3

ε0q
2

h̄2e2
e

V 2
ei(q)niSii (q)

+∞∑
n=−∞

nωJ 2
n

(
q · w0

ei

h̄ω

)
Im

1

εR
e (q; −nω)

. (22)

with ε−1
e (q; ω) = 1 +

(
h̄2e2

e

)/
(ε0q

2)LR
ee(q; ω).

Using the dielectric function in RPA and neglecting the ion structure factor, one gets
the results we derived in [13] and which were also reproduced by Kull and Plagne [14] in the
framework of a quantum Vlasov approach. Those results have a similar form as that of the
nonlinear Dawson–Oberman model [3]. We want to stress, however, the fact that in our result
the dielectric function is given by the quantum Lindhard form, whereas the dielectric theory
of Decker et al leads to the classical Vlasov dielectric function. The quantum effects have
been discussed in [13] extensively.

Expression (22) generalizes those results to dense quantum plasmas including strong
correlation effects. In the following, the influence of these correlation effects will be
investigated. Figure 1 shows the influence of the LFC (the structure factor is calculated
in hypernetted chain (HNC) approximation). The collision frequency is given as a function
of the coupling parameter � = (e2/4πε0)/dkBT with d = (4πni/3)−1/3. For weak and
moderate electric fields, v0/vth = 0.2 and 3, there occur deviations in the region � > 1 which
increase with increasing coupling. For rather strong fields, the LFC has no influence up to a
coupling of about � = 10. Furthermore, one can see that for strong coupling the influence of
the field strength becomes smaller.

Let us consider now the influence of the ion–ion correlations. Effects of such correlations
via static structure factors were discussed already by Dawson and Oberman [2] starting from
the linearized Vlasov equation and recently by Hazak et al [16] using the quantum BBGKY
hierarchy. In figure 2 the collision frequency is shown using different approximations for
the static ion–ion structure factor Sii (here the LFC is calculated as in [23]). Inclusion of
the structure factor decreases the collision frequency for small and moderate coupling up to
a value of � ≈ 5. For high values of the coupling parameter there is a strong increase in
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Figure 2. Electron–ion collision frequency as a function of the coupling parameter �. Ion structure
factor in different approaches: HNC, Debye, BH (Baus–Hansen formula).

the collision frequency. This increase is even stronger in the HNC calculation than in the
semi-analytical formula of Baus and Hansen [24]. As expected, the Debye approximation can
be applied only for weak coupling.
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